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Recitation: More on minibatch 
gradient descent, RNNs, and 

transformers



Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

tangent line

The skier should move rightward (positive direction)

initial guess of 
good parameter 

setting

The skier wants to get to the lowest point

∆L
∆w

The derivative        at the skier’s position is negative
∆w

∆L
∆w

In general: the skier should move in opposite direction of derivative

In higher dimensions, this is called gradient descent 
(derivative in higher dimensions: gradient)
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Learning a Deep Net

Victory!

Local minimum
Better 

solution

In general: not obvious what error landscape looks like! 
➔ we wouldn’t know there’s a better solution beyond the hill

In very high-dimensional parameter spaces, local minima can 
be rare but we might get stuck in parts of the error landscape 

where the slope downwards is very gradual/not steep

Popular optimizers 
(e.g., Adam, RMSProp, 
Lookahead) are variants 

of gradient descent

Suppose the neural network has a single real number parameter w

w

Loss L

The optimizer is the skier!



Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

f1 f2

L

�All parameters:

Automatic differentiation is crucial in learning deep nets!

Careful derivative chain rule calculation: back-propagation

A neural net 
does function 
composition!

xi

yi

f1(xi ) f2(f1(xi ))

L(f2(f1(xi )), yi )

1
n

n∑

i=1

L(f2(f1(xi )), yi )

Overall loss:

Gradient:
∂ 1

n

∑n
i=1 L(f2(f1(xi )), yi )

∂θ



Gradient Descent

Training 
example 

1

loss 1

Training 
example 

2

loss 2

Training 
example 

3

loss 3

…
Training 
example 

4

Training 
example 

5

Training 
example 

n

loss 4 loss 5 loss n…

average loss

compute gradient

We have to compute lots of 
gradients to help the 

optimizer know where to go!

Computing gradients using 
all the training data seems 

really expensive!

& move optimizer



Stochastic Gradient Descent (SGD)

compute gradient
& move optimizer

SGD: compute gradient using only 1 training example at a time 
(can think of this gradient as a noisy approximation of the “full” gradient)
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Stochastic Gradient Descent (SGD)

compute gradient

SGD: compute gradient using only 1 training example at a time 
(can think of this gradient as a noisy approximation of the “full” gradient)

An epoch refers to 1 full pass through all 
the training data

Training 
example 
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Training 
example 

3

loss 3

…
Training 
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& move optimizer



Minibatch Gradient Descent

average loss

compute gradient 
& move optimizer
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Minibatch Gradient Descent

average loss

compute gradient 
& move optimizer

Batch size: how many 
training examples we 

consider at a time 
(in this example: 2)

Training 
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loss 1

Training 
example 
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loss 2

Training 
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loss 3

…
Training 
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Best optimizer? Best learning rate? Best 
# of epochs? Best batch size?

Active area of research

Depends on problem, data, hardware, etc

Example: even with a GPU, you can get slow learning (slower than CPU!) 
if you choose # epochs/batch size poorly!!!



UDA_pytorch_utils.py

A look at UDA_pytorch_classifier_fit



A special kind of RNN: an “LSTM”



(Flashback) Vanilla ReLU RNN

for input in input_sequence:

current_state = output

outputs = []

outputs.append(output)

current_state = np.zeros(num_nodes)

linear = np.dot(input, W.T) + b   \ 

        + np.dot(current_state, U.T)

For simplicity, in today’s lecture, we only use the very last time step’s output

In general: there is an output at every time step

output = np.maximum(0, linear) # ReLU



RNN layerTime series

output prediction



… …

Time 0

Time 1

Time 2

output prediction 1

output prediction 0

output prediction 2

… …

Time 0

Time 1

Time 2

output prediction 1

output prediction 0

output prediction 2



… …

Time 
t − 1

Time t

Time 
t + 1

output t

output t − 1

output t + 1

outputs[t] 
= np.maximum(np.dot(input_sequence[t], W.T) 
             + np.dot(outputs[t-1], U.T) 
             + b, 0)

Vanilla RNN tends to 
forget things quickly

…



… …

Time 
t − 1

Time t

Time 
t + 1

output t

output t − 1

output t + 1

Long-term memory

… Add explicit long-term 
memory!

But need some way to 
update long-term 

memory!
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Time 
t − 1

Time t output t

output t − 1

Long-term memory

… Add explicit long-term 
memory!

But need some way to 
update long-term 

memory!

… …

Long-term 
memory updater

Called a “long short-term 
memory” (LSTM) RNN

Remembers things longer 
than vanilla RNN



Analyzing Times Series with CNNs
• Think about an image with 1 column, and where the rows index 

time steps: this is a time series!

• Think about a 2D image where rows index time steps, and the 
columns index features: this is a multivariate time series (feature 
vector that changes over time!)

• CNNs can be used to analyze time series but inherently the size of 
the filters used say how far back in time we look

• If your time series data all have the same length (same number of 
time steps) and do not have long-range dependencies that require 
long-term memory, CNNs can do well already!

⇒ If you need long-term memory or time series with different 
lengths, use RNNs (not the vanilla one) or transformers

• Note: while it is possible to have a CNN take in inputs that vary in 
size, we did not cover this in lecture



Full Transformer

Vaswani et al. “Attention is All You Need”. NeurIPS 2017.

Transformer Encoder
Transformer 

Decoder

Classifier



Decoder-Only Transformer

Vaswani et al. “Attention is All You Need”. NeurIPS 2017.

The feed forward network used 
is just an MLP

“Norm” refers to LayerNorm

“Masked” just is a reference to the 
causal dependency enforced 

(current time step’s output cannot 
depend on future time step’s inputs)

Transformer 
Decoder

Classifier



Decoder-Only Transformer

Vaswani et al. “Attention is All You Need”. NeurIPS 2017.

“Pre-norm” 
version 

that’s now 
standard

The feed forward network used 
is just an MLP

“Norm” refers to LayerNorm

“Masked” just is a reference to the 
causal dependency enforced 

(current time step’s output cannot 
depend on future time step’s inputs)

Transformer 
Decoder

Classifier



Full Transformer

Vaswani et al. “Attention is All You Need”. NeurIPS 2017.

The original full transformer was used 
for translating between languages

Encoder sees input text (e.g., English)

Decoder produces text 
in another language 

(e.g., French)

Transformer Encoder
Transformer 

Decoder

Classifier



Transformer Encoder vs Transformer Decoder

The only difference is the causal masking

In PyTorch, TransformerEncoder allows the user to specify a causal mask, 
which would turn it into a transformer decoder

Meanwhile, if you use PyTorch’s TransformerDecoder, it expects that you 
provide it information from the encoder…which we wouldn’t have if we’re 
using a decoder-only transformer so that’s why the lecture code demo just 

uses the TransformerEncoder with a causal mask…

Transformer Encoder
Transformer 

Decoder



Questions About the Lecture Demo?

Demo


