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Learning a Deep Net

Suppose the neural network has a single real number parameter w

$Loss L The skier wants to get to the lowest point
x The skier should move rightward (positive direction)
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AL The derivative % at the skier's position is negative

tangent line
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~good parameter

n general: the skier should move in opposite direction of derivative

n higher dimensions, this is called gradient descent
(derivative in higher dimensions: gradient)
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Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

In general: not obvious what error landscape looks like!
= we wouldn't know there’s a better solution beyond the hill

Lookahead) are variants

Popular optimizers @Ctory!)
(e.g., Adam, RMSProp, R

ot gradient descent

—  essesssssded —»
|
iver | ol Local minimum
Thle optimizer is the skier! Better
. . . . solution
In very high-dimensional parameter spaces, local minima can
°

_be rare but we might get stuck in parts of the error landscape
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where the slope downwards is very gradual/not steep



Handwritten Digit Recognition

Overall loss:

- 21: Lt (X)), 1)

Training label: 6
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Gradient: 8,7 Z gg(ﬁ (X7)), ¥i)

Automatic differentiation is crucial in learning deep nets!

All parameters: ¢

Careful derivative chain rule calculation: back-propagation



Gradient Descent

Training ‘\ Training |l Training |l Training M Training | Training j
| example [l example [l example [} example il example (Il example |
1 | 2 | 3 | 4 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn
| l |
We have to compute lots of average loss Computing gradients using
gradients to help the l all the training data seems

optimizer know where to go! really expensive!

compute gradient
& move optimizer



Stochastic Gradient Descent (SGD)

Training ‘\ Training |l Training |l Training M Training | Training j
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compute gradient

& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)
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Stochastic Gradient Descent (SGD)

Training ‘\ Training |l Training |l Training M Training | Training j
| example [l example [l example [} example il example (Il example |
1 | 2 | 3 | 4 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn
compute gradient An epoch refers to 1 full pass through all
& move optimizer the training data

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)



Minibatch Gradient Descent

Training [@ Training [@ Training [@ Training (@ Training | Training
example [l example |l example |l example [l example [l example |
| | | 4 5 n

loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

!

average loss

'

compute gradient
& move optimizer



Minibatch Gradient Descent

Training [@ Training [@ Training [@ Training (@ Training | Training

example [l example |l example |l example [l example [l example |

o | n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

!

average loss

Batch size: how many l

i compute gradient
training examples we s
consider at a time & move optimizer

(in this example: 2)



Best optimizer? Best learning rate? Best
# of epochs? Best batch size?
Active area of research

Depends on problem, data, hardware, etc

Example: even with a GPU, you can get slow learning (slower than CPU!)
if you choose # epochs/batch size poorly!!!



UDA_pytorch_utils.py

A look at UDA pytorch classifier fit



A special kind of RNN: an “LSTM”



(Flashback) Vanilla ReLU RNN

current state = np.zeros(num _nodes)

outputs = []1%*  — Ingeneral: there is an output at every time step

for input 1n 1nput sequence:

linear = np.dot(input, W.T) + Db \
+ np.dot(current state, U.T)

output = np.maximum(®, linear) # RelLU

outputs.append(output) «

current _state = output

For simplicity, in today’s lecture, we only use the very last time step’s output



> » output prediction

Time series RNN layer



> » output prediction O

> » output prediction 1
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> » outputt— 1

Vanilla RNN tends to
forget things quickly

> — » outputt

outputs|[t]

= np.maximum(np.dot (input sequencel[t], W.T)
+ np.dot(outputs[t-1], U.T)
+ b, 0)

> » outputt+ 1




Add explicit long-term
memory!

> —7 » outputt— 1

/ But need some way to
.3 update long-term
memory!

> —7 > OUtpUt t

> —7 » outputt+ 1
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Time t

Long-term memory

Add explicit long-term
memory!

Long-term

memory updater

=

» outputt— 1

But need some way to
update long-term
memory!

Called a "long short-term
memory” (LSTM) RNN

Remembers things longer
than vanilla RNN

» outputt



Analyzing Times Series with CNNs

e Think about an image with 1 column, and where the rows index
time steps: this is a time series!

e Think about a 2D image where rows index time steps, and the
columns index features: this is a multivariate time series (feature
vector that changes over time!)

e CNNs can be used to analyze time series but inherently the size of
the filters used say how far back in time we look

e It your time series data all have the same length (same number of
time steps) and do not have long-range dependencies that require
long-term memory, CNNs can do well already!

= It you need long-term memory or time series with different
lengths, use RNNs (not the vanilla one) or transtormers

 Note: while it is possible to have a CNN take in inputs that vary in
size, we did not cover this in lecture
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Figure 1: The Transformer - model architecture.

Vaswani et al. “Attention is All You Need”. NeurlPS 2017.



Decoder—OnIy Transformer
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Figure 1: The Transformer - model architecture.

Vaswani et al. “Attention is All You Need”. NeurlPS 2017.



Decoder-Only Transtformer
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Full Transformer

------------------------------

The original full transformer was used
for translating between languages
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Figure 1: The Transformer - model architecture.

Vaswani et al. “Attention is All You Need”. NeurlPS 2017.

Transformer :
Decoder

Encodng — Decoder produces text
in another language
(e.g., French)



Transformer Encoder vs Transformer Decoder

In PyTorch, TransformerEncoder allows the user to specity a causal mask,
which would turn it into a transformer decoder
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The only difterence is the causal masking

Meanwhile, if you use PyTorch's TransformerDecoder, it expects that you

provide it information from the encoder...which we wouldn't have if we're

using a decoder-only transformer so that's why the lecture code demo just
uses the TransformerEncoder with a causal mask...



Questions About the Lecture Demo?

Demo



