Carnegie Mellon University

Helnz

95-865 Unstructured Data Analytics

Recitation: More on minibatch
gradient descent, RNNs, and
transtformers

Slides by George H. Chen & Shahriar Noroozizadeh

Learning a Deep Net

Suppose the neural network has a single real number parameter w

$Loss L The skier wants to get to the lowest point
x The skier should move rightward (positive direction)
2w

AL The derivative % at the skier's position is negative

tangent line

|
|
|
|
|
|
. initial guess of
|

~good parameter

n general: the skier should move in opposite direction of derivative

n higher dimensions, this is called gradient descent
(derivative in higher dimensions: gradient)

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

NP,
\

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

.

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

\"‘:\

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

In general: not obvious what error landscape looks like!
= we wouldn't know there’s a better solution beyond the hill

Lookahead) are variants

Popular optimizers @Ctory!)
(e.g., Adam, RMSProp, R

ot gradient descent

— essesssssded —»
|
iver | ol Local minimum
Thle optimizer is the skier! Better
. . . . solution
In very high-dimensional parameter spaces, local minima can
°

_be rare but we might get stuck in parts of the error landscape

\4

where the slope downwards is very gradual/not steep

Handwritten Digit Recognition

Overall loss:

- 21: Lt (X)), 1)

Training label: 6

v

f1 (i) fo (f1(Xi))

> > >‘ Loss > error

L L(12(1(xi)), yi)

28x28 image ||
Xi f1 f2

1 n _
Gradient: 8,7 Z gg(ﬁ (X7)), ¥i)

Automatic differentiation is crucial in learning deep nets!

All parameters: ¢

Careful derivative chain rule calculation: back-propagation

Gradient Descent

Training ‘\ Training |l Training |l Training M Training | Training j
| example [l example [l example [} example il example (Il example |
1 | 2 | 3 | 4 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn
| l |
We have to compute lots of average loss Computing gradients using
gradients to help the l all the training data seems

optimizer know where to go! really expensive!

compute gradient
& move optimizer

Stochastic Gradient Descent (SGD)

Training ‘\ Training |l Training |l Training M Training | Training j
| example [l example [l example [} example il example (Il example |
1 | 2 | 3 | 4 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

'

compute gradient

& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

Training ‘\ Training |l Training |l Training M Training | Training j
| example [l example [l example [} example il example (Il example |
1 | 2 | 3 | 4 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

'

compute gradient

& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

Training ‘\ Training |l Training |l Training M Training | Training j
| example [l example [l example [} example il example (Il example |
1 | 2 | 3 | 4 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

'

compute gradient

& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

Training ‘\ Training |l Training |l Training M Training | Training j
| example [l example [l example [} example il example (Il example |
1 | 2 | 3 | 4 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

'

compute gradient

& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

Training ‘\ Training |l Training |l Training M Training | Training j
| example [l example [l example [} example il example (Il example |
1 | 2 | 3 | 4 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

'

compute gradient

& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

Training ‘\ Training |l Training |l Training M Training | Training j
| example [l example [l example [} example il example (Il example |
1 | 2 | 3 | 4 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

'

compute gradient

& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

Training ‘\ Training |l Training |l Training M Training | Training j
| example [l example [l example [} example il example (Il example |
1 | 2 | 3 | 4 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn
compute gradient An epoch refers to 1 full pass through all
& move optimizer the training data

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Minibatch Gradient Descent

Training [@ Training [@ Training [@ Training (@ Training | Training
example [l example |l example |l example [l example [l example |
| | | 4 5 n

loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

!

average loss

'

compute gradient
& move optimizer

Minibatch Gradient Descent

Training [@ Training [@ Training [@ Training (@ Training | Training

example [l example |l example |l example [l example [l example |

o | n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

!

average loss

Batch size: how many l

i compute gradient
training examples we s
consider at a time & move optimizer

(in this example: 2)

Best optimizer? Best learning rate? Best
of epochs? Best batch size?
Active area of research

Depends on problem, data, hardware, etc

Example: even with a GPU, you can get slow learning (slower than CPU!)
if you choose # epochs/batch size poorly!!!

UDA_pytorch_utils.py

A look at UDA pytorch classifier fit

A special kind of RNN: an “LSTM”

(Flashback) Vanilla ReLU RNN

current state = np.zeros(num _nodes)

outputs = []1%* — Ingeneral: there is an output at every time step

for input 1n 1nput sequence:

linear = np.dot(input, W.T) + Db \
+ np.dot(current state, U.T)

output = np.maximum(®, linear) # RelLU

outputs.append(output) «

current _state = output

For simplicity, in today’s lecture, we only use the very last time step’s output

> » output prediction

Time series RNN layer

> » output prediction O

> » output prediction 1

> » output prediction 2

> » outputt— 1

Vanilla RNN tends to
forget things quickly

> — » outputt

outputs|[t]

= np.maximum(np.dot (input sequencel[t], W.T)
+ np.dot(outputs[t-1], U.T)
+ b, 0)

> » outputt+ 1

Add explicit long-term
memory!

> —7 » outputt— 1

/ But need some way to
.3 update long-term
memory!

> —7 > OUtpUt t

> —7 » outputt+ 1

Long-term memory

/

Add explicit long-term
memory!

87

» outputt— 1

But need some way to
update long-term
memory!

» outputt

Time t

Add explicit long-term
memory!

— » outputt— 1

But need some way to
update long-term
memory!

— » outputt

Time t

Long-term memory

Add explicit long-term
memory!

Long-term

memory updater

=

» outputt— 1

But need some way to
update long-term
memory!

Called a "long short-term
memory” (LSTM) RNN

Remembers things longer
than vanilla RNN

» outputt

Analyzing Times Series with CNNs

e Think about an image with 1 column, and where the rows index
time steps: this is a time series!

e Think about a 2D image where rows index time steps, and the
columns index features: this is a multivariate time series (feature
vector that changes over time!)

e CNNs can be used to analyze time series but inherently the size of
the filters used say how far back in time we look

e It your time series data all have the same length (same number of
time steps) and do not have long-range dependencies that require
long-term memory, CNNs can do well already!

= It you need long-term memory or time series with different
lengths, use RNNs (not the vanilla one) or transtormers

 Note: while it is possible to have a CNN take in inputs that vary in
size, we did not cover this in lecture

Probafbilities Classifier

| Softmax |

- mm m m mm momomom P

S W Em OEm OE mEEEmmm

|l Linear |

5

B TRCETTFTEREEREERRRERRERE . [CAdd&Nom J Transformer
. | F
. Transformer Encoder i 5=, Decoder
E ,_5: r
: s \:: | Add & Norm <~
: > Add £ MBI) 1k Multi-Head
: Feed A Attention
E Fon‘/\(ard E 4. } } t N x
: — 5 (J~
' " Add & Norm
: Nx L I
: —(Add & Norm J ol Masked
: Multi-Head o Multi-Head
: Attention ;! Attention
: ‘ A ’ E : \ A }
) s S HEANSE e 2
Positional Positional
Encod P & -
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

Vaswani et al. “Attention is All You Need”. NeurlPS 2017.

Decoder—OnIy Transformer

PrObathh’[IeS Cl dSS |f| e r

i | Softmax |

:‘[Linear |

[Cadd & Nom Transformer
E Feed
The teed forward network used i} b Fomard Decoder
is justan MLP Tt '
1 TR S R ¥ D L %J ----- .\‘ N
Norm” refers to LayerNorm - : _J|
[Add&lNom
I REEEEEEEEEEEEEEEEEEEEE] § E Ve
PP ‘|| Multi-Head
11 TR . : Attention
Masked” just is a reference to the [T
1% v, ,
causal dependency enforced R ERRIEECRTTERRTERRRERRREE :
)) & Posrtrorral
(current time step’s output cannot Encoding
. ;. Output
depend on future time step's inputs) Embeiddmg
Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

Vaswani et al. “Attention is All You Need”. NeurlPS 2017.

Decoder-Only Transtformer

l

PrObabehtIeS Cl dSS |'F| e r

i | Softmax |

. [Lnear)

-
-
-

--

-
-

-
-
-
-
-
-
-
-
“
-

“"Masked" just is a reference to the
causal dependency enforced
(current time step’s output cannot
depend on future time step’s inputs)

Tra nsformer
Decoder

C Add Je | X
4 Masked

Multi-Head
Attention

At

Positional
Encoding

Output
Embedding

T

Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Vaswani et al. “Attention is A

Il You Need”. NeurlPS 2017.

“"Pre-norm

version

' that's now

standard

11

Full Transformer

The original full transformer was used
for translating between languages

.................................. | CAdd & Norm J~
: : : Feed
: Transtormer Encoder iif] e
,_5: —
- N] [Add & Norm Je=~
—(Add &_Norm) A Multi-Head
Feed A Attention
Forward E | 7 7 7 N x
A : . [‘](_:
« +| LAdd & Norm
NX LI | I
~—>| Add & Norm] : NMasked
Multi-Head . Multi-Head
Attention . Attention
A+ 2 | At
—_— J: v,
Positional Positional
Encoding D ¢
Input Output
Embedding Embedding
Inputs Outputs

|

. | Softmax)

E[Linear |

(shifted right)

Figure 1: The Transformer - model architecture.

Vaswani et al. “Attention is All You Need”. NeurlPS 2017.

Transformer :
Decoder

Encodng — Decoder produces text
in another language
(e.g., French)

Transformer Encoder vs Transformer Decoder

In PyTorch, TransformerEncoder allows the user to specity a causal mask,
which would turn it into a transformer decoder

B RGCETLITCRTCRPEPRELEELPCRREPRE . [CAdd&Nom J Transformer :
: 1y Feed :
: Transtormer Encoder 1| o Decoder
r N
~>{ Add & Norm |
Feed : '
Forward : E N x
A : : []«:
| LAdd & Norm
V| s | e
Multi-Head . Multi-Head
Attention . Attention
—t A 4
S e S e

The only difterence is the causal masking

Meanwhile, if you use PyTorch's TransformerDecoder, it expects that you

provide it information from the encoder...which we wouldn't have if we're

using a decoder-only transformer so that's why the lecture code demo just
uses the TransformerEncoder with a causal mask...

Questions About the Lecture Demo?

Demo

